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What is causal validation of an ML model?

Question: What is the 
causal impact of 

deploying an ML model 
on outcomes of interest?
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What is causal validation of an ML model?

This is a general problem:
• Does deploying ML models in hospitals improve patient survival?
• Does using AI coding assistants increase the speed and quality 

of code development for software developers?
• Does using bail recommendation systems improve defendant 

return rates to the courtroom?

Input Model Output Actions Outcome
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Our Goal: Just Trial Once

Given data from a 
cluster RCT…
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Our Goal: Just Trial Once

… bound the outcome of interest 
under a never-deployed model 

between L and U.

Assignment Outcomes

3

85%

87% - 92%

0



Two Challenges: Coverage and Trust



Two Challenges: Coverage and Trust

1

Patient Model Output Actions Outcome

2



Two Challenges: Coverage and Trust

1

Patient Model Output Actions Outcome

2

3

We have no 
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what happens 
when alerting 
on individuals 

like this.
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Model alerts are deterministic: we are 
unlikely to see all possible model outputs 
for all types of patients.
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Example: 𝐷 = 1

𝐴 = 𝜋1 𝑋 = 1

𝑀 = 0.8

Performance Assumption: There exists a 
computable metric that captures overall model 
performance / trust (e.g., false alarm rate).
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Assumed causal data-generating process

𝐷: Indicator of trial arm
Π: Deployed model/policy
𝐴: Model Output
𝑋: Model Inputs
𝑌: Clinical Outcome
𝑀: Model performance metric

𝜋1

Example: 𝐷 = 1

𝐴 = 𝜋1 𝑋 = 1

Goal: Bound E 𝑌 𝜋𝑛𝑒𝑤 , the 
expected outcome under model 𝜋𝑛𝑒𝑤 .

𝑀 = 0.8

Potential outcomes notation: the 
outcome that would have occurred had 
we counterfactually deployed the new 

model.



Problem Setup

Assumed causal data-generating process

𝐷: Indicator of trial arm
Π: Deployed model/policy
𝐴: Model Output
𝑋: Model Inputs
𝑌: Clinical Outcome
𝑀: Model performance metric

𝜋𝑛𝑒𝑤

𝐴 = 𝜋𝑛𝑒𝑤 𝑋

Goal: Bound E 𝑌 𝜋𝑛𝑒𝑤 , the 
expected outcome under model 𝜋𝑛𝑒𝑤 .

𝑀 = 𝑓𝑀(𝜋𝑛𝑒𝑤)

Intervene on a 
new model.
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Allows us to know what the best / 
worst-case scenarios are.

Boundedness is satisfied in practice 
with, for example, binary outcomes.
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Lower / Upper Bounds on Causal Impact

• We further show that the lower / upper bounds are tight, i.e. they 
cannot be improved without further assumptions (Theorem 3.2).

• We give inverse-probability weighted (IPW) estimators for the bounds 
with asymptotically valid confidence intervals (Proposition 3.4). 

• The more “similar” that the trialed models in the RCT are to the new 
model in coverage and performance metric, the tighter the bounds 
will be.
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Summary
• We propose a framework and method for estimating / bounding the 

causal impact of deploying a new ML model from RCT data where 
the new model was never trialed.

• Our bounds rely on assumptions, but these assumptions are 
falsifiable using RCT data, given that multiple models were trialed.

• One implication of results: trial multiple models in cluster RCTs. This 
allows for falsification of assumptions and alleviates challenges 
related to coverage and performance.

• Potential use case: bounding causal impacts of model updates before 
trialing new model updates in RCTs.

• A step towards reliable re-use of RCT data evaluating ML models.



Thank you for your attention!

• Please join us at our poster this afternoon from 16:00-18:30!

Please scan the QR code for the 
arXiv link to our paper.
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1
2

1 When the output is not a neutral 
action and there exists at least one 
agreeing model with worse or 
equal performance, use outcomes 
under the next-worst deployed 
model as the lower bound.

Otherwise, lower bound by the 
lowest possible value of the 
outcome.

2



Lower / Upper Bounds on Causal Impact

1
2

3 When the output is a neutral 
action and there exists at least one 
agreeing model, use outcomes 
under agreeing models as the 
lower bound.

3



Lower / Upper Bounds on Causal Impact

1
2

3
4

3 When the output is a neutral 
action and there exists at least one 
agreeing model, use outcomes 
under agreeing models as the 
lower bound.

Otherwise, lower bound by the 
lowest possible value of the 
outcome.

4
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Randomized Controlled Trials (RCTs) help us 
compare between two scenarios
Compare no deployment of ML model vs. deployment of ML model.

Patient Actions Outcome

Patient Model Output Actions Outcome
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Why Require the Performance Assumption?

Income

Age

Recall the coverage 
challenge.

A simple solution: have 
the trialed model (blue) 
cover the whole square.
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always alerts and a model that 
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Why Require the Performance Assumption?

• Why is trialing a model that 
always alerts and a model that 
never alerts (the control arm) 
a bad idea?

• This “always alert” model will 
likely have minimal impact 
due to its poor performance.

Risk Score

Outcome under alert model

Outcome under no alert model

Probability of Survival
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Setup

• Four types of patients with 
varying likelihoods of 
developing disease and 
survival rates.
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Synthetic Simulation Study

Setup

• Four types of patients with 
varying likelihoods of 
developing disease and 
survival rates.

• Raising alerts on the 
highest-risk (“most 
obvious”, X=0) patients is 
less helpful than raising 
alerts on other patients. Patient Subgroup Patient Subgroup

Disease Prevalence Survival Likelihood
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ML Models ML Models

Model 
Performance Outcomes

New models to 
evaluate.
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and intervals indicate 
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Synthetic Simulation Study

Results

• Model performance is the 
raw accuracy of the model 
in predicting disease onset.

• Bars indicate ground truth, 
and intervals indicate 
statistical uncertainty.

ML Models ML Models

Model 
Performance Outcomes

Model accuracy is not 
indicative of causal impact.



Machine Learning (ML) Models as Medical 
Devices
Artificial intelligence and machine learning models are increasingly 
deployed in high-risk domains such as healthcare.

FDA. Artificial intelligence and machine learning (AI/ML)-enabled medical devices. U.S. Food and Drug Administration, 2024. URL 
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices. Accessed 
June 29th, 2025.
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Need for More RCTs of ML/AI Models

David Ouyang and Joseph Hogan. We need more randomized clinical trials of AI, 2024. URL: https://ai.nejm.org/doi/pdf/10.1056/AIe2400881. 

https://ai.nejm.org/doi/pdf/10.1056/AIe2400881


Recent RCTs of ML/AI Models

S. K. Gohil et al. Stewardship prompts to improve antibiotic selection for urinary tract 
infection. JAMA, 331:2018, 6 2024a. doi: 10.1001/jama.2024.6259. URL: 
http://dx.doi.org/10.1001/jama.2024.6259. 

Example: INSPIRE trial for improving 
antibiotic prescriptions using model-
driven best-practice alerts.

http://dx.doi.org/10.1001/jama.2024.6259


Recent RCTs of ML/AI Models

Important Features

• Cluster RCT: Randomizes hospitals to 
ML model vs. control.

• Outcomes: Compares clinical 
outcomes between treatment/control 
groups to assess the impact of model 
deployment.

S. K. Gohil et al. Stewardship prompts to improve antibiotic selection for urinary tract 
infection. JAMA, 331:2018, 6 2024a. doi: 10.1001/jama.2024.6259. URL: 
http://dx.doi.org/10.1001/jama.2024.6259. 

Example: INSPIRE trial for improving 
antibiotic prescriptions using model-
driven best-practice alerts.

http://dx.doi.org/10.1001/jama.2024.6259
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